organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

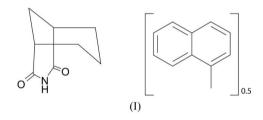
Ashley T Hulme,^a Philippe Fernandes,^b Alastair Florence,^b* Andrea Johnston^b and Kenneth Shankland^c

^aChristopher Ingold Laboratory, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, England, ^bSolid-State Research Group, Department of Pharmaceutical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, Scotland, and ^cISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, England

Correspondence e-mail: alastair.florence@strath.ac.uk

Key indicators

Powder X-ray study T = 295 KMean $\sigma(C-C) = 0.002 \text{ Å}$ R factor = 0.046 wR factor = 0.057

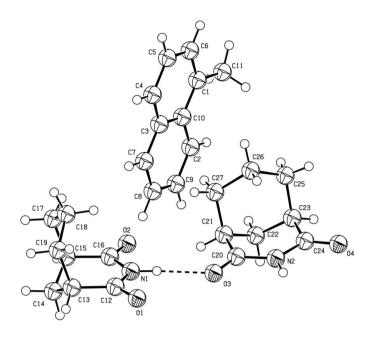

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Powder study of 3-azabicyclo[3.3.1]nonane-2,4-dione 1-methylnaphthalene hemisolvate

The crystal structure of the title compound, $C_8H_{11}N_1O_{2}$. 0.5 $C_{11}H_{10}$, was solved by simulated annealing from laboratory X-ray powder diffraction data, collected at room temperature. Subsequent Rietveld refinement, using data collected to 1.51 Å resolution, yielded an R_{wp} value of 0.057. The compound crystallizes with two molecules of 3-azabicyclononane-2,4-dione and one molecule of 1-methylnaphthalene in the asymmetric unit.

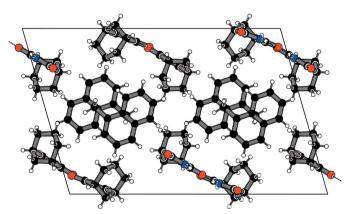
Comment

The title compound, (I), was crystallized from 1-methylnaphthalene during a preliminary solvent screen in preparation for an automated parallel crystallization study of 3azabicyclo[3.3.1]nonane-2,4-dione. The sample was identified as a new form using multi-sample foil transmission X-ray powder diffraction analysis (Florence *et al.*, 2003).



The crystal structure of (I) was solved by simulated annealing using laboratory X-ray powder diffraction data. The compound crystallizes in space group $P2_1/c$ with two molecules of 3-azabicyclononane-2,4-dione and one molecule of 1methylnaphthalene in the asymmetric unit (Fig. 1). In the crystal structure, intermolecular N-H···O hydrogen bonds (Table 1) link two independent 3-azabicyclononane-2,4-dione molecules into a chain (Fig. 1) running along the b axis. The structure of this chain is very similar to that found in the unsolvated form 1 of 3-azabicyclononane-2,4-dione (Howie & Skakle, 2001). However, in form 1 the chain is propagated by a glide symmetry operation, whereas in (I) it propagates via a 2_1 screw axis. The paired hydrogen-bonded chains in (I) constitute a pseudo-layer parallel to the bc plane. Between two pseudo-layers related by translation along the *a* axis, channels parallel to the b axis are observed. These channels are filled by stacks of 1-methylnaphthalene solvent molecules, which are oriented nearly perpendicular to the b axis (Fig. 2).

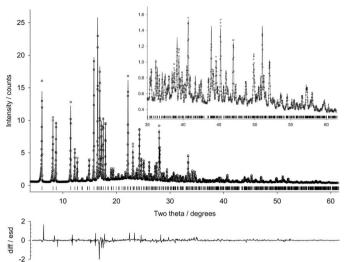
Experimental


© 2006 International Union of Crystallography All rights reserved A polycrystalline sample of (I) was recrystallized by cooling a saturated 1-methylnaphthalene solution from 313 to 283 K. The sample

Received 19 June 2006 Accepted 1 August 2006

Figure 1

The asymmetric unit of (I), with the atom-numbering scheme. The dashed line indicates the N-H···O hydrogen bond between 3-azabicyclononane-2,4-dione molecules. Displacement spheres are shown at the 50% probability level.


Figure 2

The crystal packing of (I) viewed down the b axis and showing the stacks of solvent molecules situated between the pseudo-layers formed by 3azabicyclononane-2,4-dione molecules. Illustrated using PLATON (Spek, 2003).

was loaded into a 0.7 mm borosilicate glass capillary and rotated throughout the data collection to minimize preferred orientation effects. Data were collected using a variable count time (VCT) scheme in which the step time is increased with 2θ (Shankland *et al.*, 1997; Hill & Madsen, 2002).

Crystal data

$C_8H_{11}NO_2 \cdot 0.5C_{11}H_{10}$	$D_x = 1.251 \text{ Mg m}^{-3}$
$M_r = 224.28$	Cu $K\alpha_1$ radiation
Monoclinic, $P2_1/c$	$\mu = 0.67 \text{ mm}^{-1}$
a = 15.02360 (18) Å	T = 295 K
b = 7.32295 (12) Å	Specimen shape: cylinder
c = 22.5164 (3) Å	$12 \times 0.7 \times 0.7 \text{ mm}$
$\beta = 106.0201 \ (6)^{\circ}$	Specimen prepared at 298 K
V = 2380.99 (6) Å ³	Particle morphology: needle, white
Z = 8	

Figure 3

Final observed (points), calculated (line) and difference $[(y_{obs}-y_{calc})/$ $\sigma(y_{obs})$ profiles for the Rietveld refinement of the title compound.

Data collection

Bruker AXS D8 Advance Scan method: step diffractometer Absorption correction: none $2\theta_{\min} = 4.0, 2\theta_{\max} = 62.5^{\circ}$ Increment in $2\theta = 0.017^{\circ}$ Specimen mounting: 0.7 mm borosilicate capillary Specimen mounted in transmission mode

Refinement

$R_{\rm p} = 0.046$	Only H-atom coordinates refined
$R_{wp} = 0.057$	$w = 1/\sigma(Y_{\rm obs})^2$
$R_{\rm exp} = 0.013$	$(\Delta/\sigma)_{\rm max} = 0.01$
$R_{\rm B} = 3.499$	Preferred orientation correction:
S = 2.00	A spherical harmonics-based
Profile function: Fundamental	preferred orientation correction
parameters with axial divergence	(Järvinen, 1993) was applied with
correction.	TOPAS (Coelho, 2003) during
211 parameters	the Rietveld refinement

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} N1 - H11 \cdots O3 \\ N2 - H22 \cdots O2^{i} \end{array}$	0.900 (5)	1.966 (6)	2.865 (2)	175.8 (4)
	0.901 (5)	1.921 (10)	2.812 (8)	170.1 (5)

Symmetry code: (i) x, y + 1, z.

The diffraction pattern indexed to a monoclinic cell [M(20) = 44.5,F(20) = 146.5; *DICVOL91*; Boultif & Louer, 1991] and the space group $P2_1/c$ was assigned from volume considerations and a statistical consideration of the systematic absences (Markvardsen et al., 2001). The data set was background subtracted and truncated to $51.8^{\circ} 2\theta$ for Pawley fitting (Pawley, 1981; $\chi^2_{Pawley} = 15.77$) and the structure solved using the simulated annealing (SA) global optimization procedure, described previously (David et al., 1998), that is now implemented in the DASH computer program (David et al., 2001). The SA structure solution used 453 reflections and involved the optimization of three fragments totaling 18 degrees of freedom (six positional and orientational for each fragment present in the asymmetric unit). All degrees of freedom were assigned random values at the start of the simulated annealing. The best SA solution had a favourable $\chi^2_{SA}/\chi^2_{Pawley}$ ratio of 3.47 and a chemically reasonable lattice packing arrangement, with no significant misfit to the diffraction data.

The solved structure was then refined against the data in the range 4–61.4° 2θ using a restrained Rietveld (1969) method as implemented in *TOPAS* (Coelho, 2003), with R_{wp} falling to 0.0566 during the refinement. All atomic positions (including H atoms) for the structure of (I) were refined, subject to a series of restraints on bond lengths, bond angles and planarity.

The restraints were set such that bonds and angles did not deviate more than 0.01 Å and 0.8°, respectively, from their initial values during the refinement. Atoms C12, C13, C15, C16, O1, N1, O2 and H1 (first molecule) and atoms C20, C21, C23, C24, O3, N2, O4 and H22 (second molecule) of 3-azabicyclo[3.3.1]nonane-2,4-dione were restrained to be coplanar. Restraints were also applied to the methylnaphthalene molecule, for planarity purposes. A spherical harmonics (4th order) correction of intensities for preferred orientation was applied in the final refinement (Järvinen, 1993). The observed and calculated diffraction patterns for the refined crystal structure are shown in Fig. 3. $U_{iso}(H)$ values were fixed at 0.076 Å².

Data collection: *DIFFRAC plus XRD Commander* (Kienle & Jacob, 2003); cell refinement: *TOPAS* (Coelho, 2003); data reduction: *DASH* (David *et al.*, 2001); program(s) used to solve structure: *DASH*; program(s) used to refine structure: *TOPAS*; molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *PLATON*, *enCIFer* (Allen *et al.*, 2004) and *SHELXL97* (Sheldrick, 1997).

We thank the Basic Technology Programme of the UK Research Councils for funding under the project Control and Prediction of the Organic Solid State (www.cposs.org.uk). We also thank the EPSRC for grant GR/N07462/01.

References

- Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
- Boultif, A. & Louër, D. (1991). J. Appl. Cryst. 24, 987-993.
- Coelho, A. A. (2003). TOPAS User Manual. Version 3.1. Bruker AXS GmbH, Karlsruhe, Germany.
- David, W. I. F., Shankland, K., Cole, J., Maginn, S., Motherwell, W. D. S. & Taylor, R. (2001). DASH. Version 3.0 User Manual. Cambridge Crystallographic Data Centre, Cambridge, England.
- David, W. I. F., Shankland, K. & Shankland, N. (1998). Chem. Commun. pp. 931-932.
- Florence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930–1938.
- Hill, R. J. & Madsen, I. C. (2002). Structure Determination from Powder Diffraction Data, edited by W. I. F. David, K. Shankland, L. B. McCusker and Ch. Baerlocher, pp.114–116. Oxford University Press.
- Howie, R. A. & Skakle, J. M. S. (2001). Acta Cryst. E57, 0822-0824.
- Järvinen, M. (1993). J. Appl. Cryst. 26, 525-531.
- Kienle, M. & Jacob, M. (2003). DIFFRAC plus XRD Commander. Version 2.3. Bruker AXS GmbH, Karlsruhe, Germany.
- Markvardsen, A. J., David, W. I. F., Johnson, J. C. & Shankland, K. (2001). Acta Cryst. A57, 47–54.
- Pawley, G. S. (1981). J. Appl. Cryst. 14, 357-361.
- Rietveld, H. M. (1969). J. Appl. Cryst. 2, 65-71.
- Shankland, K., David, W. I. F. & Sivia, D. S. (1997). J. Mater. Chem. 7, 569-572.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.